

Soils: Understanding the Foundations of an Onsite Wastewater System

- Texture
- Clay Minerology
- Structure
- Soil Wetness Conditions

Factors That Impact Water Movement in Soil

- Soil texture
- Soil mineralogy
- Soil structure
- Soil wetness
- Organic matter and vegetation
- Land use
- Landscape position
- Parent material

What is Soil Texture

- Soil texture is the relative proportion of
 - Sand
 - Silt
 - Clay

Soil Texture

- Use texture to make inferences into pore size
- From pore size begin to estimate water movement and treatment
 - Finer texture means slower water movement
 - Finer texture means greater treatment
- Texture by itself is not enough information to determine site suitability

Soil Texture (Mineral Material Only)

• Sand – gritty

• Silt - smooth, velvety

Clay - slick, sticky

USDA Textural Classes (12)

- Sand
- Loamy Sand
- Sandy Loam
- Loam
- Silt Loam
- Silt

- Sandy Clay Loam
- Silty Clay Loam
- Clay Loam
- Sandy Clay
- Silty Clay
- Clay

Soil Texture

Examples

Textural Groups for OSWW

- Group I:
 - Sand, Loamy sand
- Group II:
 - Sandy loam, Loam,
- Group III:
 - Sandy clay loam, Silt loam, Clay loam, Silty clay loam,
 Silt
- Group IV:
 - Sandy clay, Silty clay, Clay

Soil Texture

Determining Texture

Determination of Texture

- Field procedure
- Laboratory procedure
 - Hydrometer
 - Pipette

- Soil must be moist, not saturated; moist enough to mold like putty when you try to form a ball in your hand.
- Soil Texture Class Key*
- Does soil form a ball or cast?
- No the texture is SAND

- Can the ball be handled?
- No the texture is LOAMY SAND.
- OR
- When pressing the soil between thumb and forefinger does the soil form a ribbon that extends beyond your forefinger?
- No the texture is LOAMY SAND.

- If the soil forms a ribbon that that extends past the forefinger, note the length of the ribbon.
- Next excessively wet a small sample in the palm and rub with the forefinger.

- If the ribbon was < 1 inch long when it broke and the excessively wet sample feels:
 - gritty, the texture is SANDY LOAM;
 - smooth, the texture is **SILT LOAM**;
 - neither gritty nor smooth, the texture is **LOAM**.

water technologies

- If the ribbon was between 1 and 2 inches long when it broke and the excessively wet sample feels:
 - gritty, the texture is SANDY CLAY LOAM; smooth,
 - the texture is **SILTY CLAY LOAM**;
 - neither gritty nor smooth, the texture is CLAY LOAM.

water technologies

- If the ribbon > 2 inches long when it broke and the excessively wet sample feels:
 - gritty, the texture is **SANDY CLAY**;
 - smooth, the texture is **SILTY** *CLAY*;
 - neither gritty nor smooth, the texture is CLAY.

water technologies

Tricks For Determining Texture

- How much water does it take to moisten the sample?
 - The more clay in the sample the more water it will take
- Does the sample leave hands with dusting
 - Silt
- Does your thumb leave a finger print in the sample?
 - Fingerprints = Clay

Tricks For Determining Texture

What do your hands look like after drying?

Avoid Texture Mistakes

- Don't overestimate silt content
 - Mica in the soil will feel like silt but is actually sand sized
 - Organic material will make a sample feel more silty than it really is
- Don't overestimate clay content
 - Expansive clays will make a sample feel like it is higher in clay than it really is

Clay Mineralogy

Clay Mineralogy

- Clay mineralogy affects:
 - The degree to which some soils swell when wetted
 - Thereby affecting the number of pores
 - Thereby affecting wastewater movement through soil
- Therefore ...
- Clay mineralogy affects site suitability

Types of clay

- 1:1 Clays (such as kaolinite)
 - Do not expand extensively on wetting
- 2:1 Clays, including mixed mineralogy clays (e.g. mix of kaolinite and montmorillonite or other clay minerals)
 - May shrink and swell extensively when dried and wetted

Plasticity	Code			Criteria:
Class	Conv	PDP	NASIS	Make a roll of soil 4 cm long
Non-Plastic	(w) po	PO	PO	Will not form a 6 mm diameter roll, or if formed, can't support itself if held on end.
Slightly Plastic	(w) ps	SP	SP	6 mm diameter roll supports itself; 4 mm diameter roll does not.
Moderately Plastic ¹	(w) p	Р	MP	4 mm diameter roll supports itself, 2 mm diameter roll does not.
Very Plastic	(w) vp	VP	VP	2 mm diameter roll supports its weight.

Historically, the Moderately Plastic comply called Plastic.

USDA-NRCS

2-53

September 2002

Special

Chem. Resp.

Special

sat / Perm.

Chem. Resp.

Impacts on Water Movement

Granular: Resembles cookie crumbs and is usually less than 0.5 cm in diameter. Commonly found in surface horizons where roots have been growing.

Blocky: Irregular blocks that are usually 1.5 - 5.0 cm in diameter.

Prismatic: Vertical columns of soil that might be a number of cm long. Usually found in lower horizons.

Columnar: Vertical columns of soil that have a salt "cap" at the top. Found in soils of arid climates.

Platy: Thin, flat plates of soil that lie horizontally. Usually found in compacted soil.

Single Grained: Soil is broken into individual particles that do not stick together. Always accompanies a loose consistence. Commonly found in sandy soils.

What Is Soil Structure?

- The natural aggregation of basic soil particles into identifiable masses, or structural *units*
- These units are identified by:
 - Type- based on the shape
 - Size based on the relative size
 - Grade- based on how well the structure is developed

Definition

- Soil Structure
 - the arrangement of primary soil particles into compound particles, peds, or clusters
 - that separate by natural planes of weakness from adjoining aggregates.

How Soils Get Structure

- Excretions from soil microbes bind soil particles together
- Filaments from soil fungi tie soil particles together
- Plant roots excrete sugars and waste products that bind soil mineral particles
- Movement of clay and organic materials helps bind soil particles
- Electrostatic forces

Types Of Soil Structure

Water Movement

 Predominantly around structural units versus through structural units

• Crumb And Granular Soil Structure = Suitable

Block-like Soil Structure

Blocky

Sub-Angular Blocky

• PLATY SOIL STRUCTURE = Problematic

• PRISMATIC SOIL STRUCTURE = Problematic

- ABSENCE OF SOIL STRUCTURE
 - Soils which are single grained and exhibit no structural aggregates = SUITABLE

 Soils which are massive and exhibit no structural peds = UNSUITABLE.

How Does Structure Affect System Size

- The finer the ped size, the better the drainage
 - Smaller Peds = Smaller Drainfield

Soil Wetness

Soil Wetness

We do not rely on visual observation of water or wet soils

We use soil colors as an indication of how well-drained or wet a soil is (or was)

Seasonally Waterlogged Soils Will Develop a Mixture of Gray and Brown Colors as Fe is Reduced And Re-Oxidized

Waterlogged Soils Are Identified By:

- Colors that form only in anaerobic soils: contain no oxygen (reduced) and are saturated.
- Diagnostic colors are gray with spots of red or brown that form in soils that were reduced.
- Termed Redox Depletions (gray) and Redox Concentrations (red, brown)

How To Make A Soil Gray?

- Specific chemical reactions must occur to cause gray colors to form when soils are saturated.
- 2. These reactions require:
- Bacteria,
- Organic matter,
- Saturated soil, and
- Slowly moving water lacking oxygen.

Where does the brown color come from?

Red Soil

Gray Soil

Gray sand covered by red Fe³⁺ coating

Sand without Fe coatings

